Ir al contenido principal

Aprendizaje profundo: ¿La última frontera?

El aprendizaje profundo (DL en su acrónimo en inglés)  basado en la imitación de las redes neuronales humanas es el concepto de moda en la Inteligencia Artificial, y el pilar sobre el que se están construyendo las iniciativas más avanzadas en este campo, tal y como sugiere Pablo Rodríguez Canfranc. Sin embargo, el autor rebaja sus expectativas, sin negar su valor y utilidad (reconocimiento del lenguaje natural, reconocimiento de imágenes, traducción simultánea, conducción autónoma, investigación médica…) y nos acerca las tesis de Gary Marcus.

Este investigador norteamericano del campo de la psicología advierte que el DL está llegando a su frontera, a un muro que no podrá pasar si no se combina con otras técnicas. El aprendizaje profundo es empleado como un sistema de clasificación estadístico que emula el funcionamiento del cerebro humano. Su forma de aprendizaje contempla la retroalimentación y realiza las correcciones oportunas gracias a su estructura de capas neuronales artificiales para llegar a la solución deseada. Un modelo de ensayo/error muy cercano al humano capaz de aprender de su propia experiencia.

Pero Gary Marcus apunta que el DL es limitado porque básicamente se alimenta de datos,  de una ingente cantidad de datos, y llegará a una conclusión clara si los datos de los que se nutre son igualmente claros.; si no, su resultado será impreciso y superficial. Marcus va más allá y enumera hasta 10 puntos para señalar las limitaciones del aprendizaje profundo, de los que podemos destacar los cinco primeros:

-Incapacidad para para aprender términos abstractos.
-Incapacidad ante escenarios que difieran ligeramente de su entrenamiento.
-Incapacidad de afrontar una estructura jerárquica verbal de forma natural.
-Incapacidad de extraer juicios o conclusiones no explícitos.
-Y además no es transparente. No sabemos cómo llega a determinadas decisiones.

Por estos motivos, entre otros, Marcus señala que el DL no es la panacea, y debe ser contemplado como una herramienta estadística más que habrá de ser utilizada con otro tipo de herramientas para lograr avances y que no se produzca un parón en el desarrollo de la Inteligencia Artificial.

Quizás uno de los problemas más inminentes que provoca el aprendizaje profundo resida en el último de los puntos destacados con anterioridad. Guillermo Vega explica en El País que “el aprendizaje profundo puede hacer ganar millones con inversiones financieras, detectar enfermedades o mil cosas más que cambien todas las industrias. Pero va a llegar el momento (o, más bien, ha llegado el momento) en que lo hagan sin que los humanos seamos capaces de comprender sus razonamientos. Si todo va bien, no hay problema. La cuestión es: ¿qué pasa si algo sale mal?”.

Otro investigador muy crítico con el aprendizaje profundo es Michael I. Jordan, que sostiene que no hay inteligencia real en el DL, y va más allá al acusar a la IA de distraer tanto a la sociedad como a la comunidad científica y que si se sigue por el este camino únicamente se cosechará frustración al constatar que máquinas en las que se ha invertido mucho tiempo y dinero sencillamente no funcionan.

El DL ha alcanzado cotas de desarrollo inimaginables hace años, pero todavía se encuentra lejos de las capacidades humanas. Y entre estas capacidades humanas destaca el sentido común, que todavía parece muy lejos del alcance de las redes neuronales artificiales, a pesar de la existencia de proyectos dispuestos a invertir una gran cantidad de dinero para lograr avances.

El aprendizaje profundo, como conjunto de algoritmos de aprendizaje automático, corre además el riesgo de reforzar prejuicios y sesgos ya existentes en la sociedad si no se tiene cuidado a la hora de clasificar los datos por parte del ser humano. Enrique Dans explica en su artículo 'El machine learning y sus segos' que "un sistema de machine learning es tan bueno como los datos con los que lo alimentamos, y no hace tanto tiempo que la sociedad, de manera generalizada en los países desarrollados, sostenía importantes sesgos en función del género de las personas". A estos entornos podemos añadir también sesgos de raza, por ejemplo.

¿Qué quiere decir esto? Pues que enseñamos todo a los sistemas de Inteligencia Artificial, incluidos nuestros prejuicios. Si los datos están sesgados desde el principio, esos datos serán empleados para llegar a conclusiones y soluciones sesgadas, tal y como explica Cade Metz en The New York Times en un artículo en el que el doctor Bonahonn avanza que los ingenieros de software habrán de actuar como biólogos para entender el comportamiento de determinados sistemas de Inteligencia Artificial, tal y como los primeros hacen con las células.  

Comentarios

Entradas populares de este blog

Diferentes tipos de alimentos según el CAE

El Código Alimentario Español (CAE) define qué es un alimento y un nutriente y establece diferentes categorías para los distintos tipos de alimentos que existen, según la legislación española. Por lo tanto, y tal y como se nos pide en el ejercicio, veamos con ejemplos los distintos tipos de alimentos que podemos encajar según sus definiciones. Productos dietéticos y de régimen Teniendo en cuenta la definición que el CAE hace de este tipo de productos, podemos encajar en esta categoría la pasta sin gluten, destinada a satisfacer las necesidades alimentarias de personas celíacas, o unas galletas ricas en fibra. Productos sucedáneos Sin fines engañosos o fraudulentos pretenden sustituir en parte o en todo a un alimento. Podemos incluir aquí el sucedáneo de las angulas (quién no se las ha preparado alguna vez) o las hamburguesas hechas a base de ingredientes vegetales. Alimentos fundamentales Atendiendo a la clasificación que el CAE hace de este tipo de alimentos podemos...

La peste negra, un punto de inflexión hacia el Renacimiento

En mitad de las múltiples tensiones sociales, políticas, crisis y guerras que asolaron buena parte de Europa en la que se conoce como Baja Edad Media, apareció en 1347 la más letal de todas las epidemias: la peste negra . Una enorme ola de desolación que se extendió hasta 1353 en su punto máximo. Tras de sí dejó un rastro de alrededor de 48 millones de muertos en todo el mundo, de los que al menos 25 se produjeron en nuestro continente. Un tercio de la población europea, y siempre según las estimaciones más optimistas. Un golpe demográfico del que costó cientos de años recuperarse. El triunfo de la muerte, Pieter Brueghel el Viejo Pero las consecuencias de la peste negra no fueron sólo demográficas. Son muchos los historiadores que sostienen que su aparición puso punto y final al Medievo y dio paso al Renacimiento . Este cambio se produjo por varios factores. El campo quedó despoblado, las ciudades se revitalizaron y con ellas una nueva burguesía enfrentada a la antigua no...

Corrientes de convección

Última parada. Llegamos al final de la asignatura. Hemos visto un montón de cosas, y me he dado cuenta de que soy un claro ejemplo de la necesidad de la divulgación científica. ¿Por qué? Porque sin ella no hubiera llegado hasta aquí ni de casualidad. De lo tratado hasta ahora en la asignatura ha habido un par de cosas que me han llamado especialmente la atención; una ha sido el comportamiento de la luz -tema con el que, por cierto, he metido la pata en un ejercicio anterior-, y otro han sido los movimientos de convección. La entrada al blog de Joaquín ‘Arroz y convección’ fue el detonante. Temperaturas, densidad, aire que sube y que baja. Lo que terminó por despertar toda mi curiosidad fue esto: “las celdas de convección son responsables de multitud de fenómenos meteorológicos y geológicos. De hecho algunos volcanes son algo parecido a los puntitos del arroz sólo que lo que sube es lava”. En lo de las manchas solares ya no quise ni meterme para no colapsar. Del resto, ...